I M.Tech - II Semester - Regular/Supplementary Examinations JULY - 2017

GEOMETRIC MODELING (MACHINE DESIGN)

Duration: 3 hours

Max. Marks:70
Answer any FIVE questions. All questions carry equal marks

1. a) If $P(x, y, z)$ is an object reference point for scaling, explain how the scaling operation is defined in terms of scaling with respect to the origin.
b) A pyramid defined by the coordinates $\mathrm{A}(0,0,0)$, $\mathrm{B}(1,0,0), \mathrm{C}(0,1,0)$ is rotated by 45^{0} about the line L that has the direction $\mathrm{V}=\mathrm{J}+\mathrm{K}$ and passing through point $\mathrm{C}(0,1,0)$.
Find the coordinates of rotated figure.
2. Determine the piecewise cubic spline curve for the four twodimensional position vectors $(0,0),(1,1),(2,-1)$ and $(3,0)$ using chord approximation method with the tangent vectors at the ends $(1,1)$ and $(1,1)$. Also calculate intermediate points at $1 / 3$ and $2 / 3$ for each segment.
3. a) Explain the role of control points in Bezier's approach, also explain about degree elevation.

7 M
b) $(1,1),(2,3),(4,3)$ and $(3,1)$ are the vertices of a Bezier polygon. Determine the seven points on the Bezier curve and plot the curve.
4. a) Consider a quadratic B-spline curve with uniform knot spacing. Consider a segment with control points $(1,0)$ $(1,1)$ and $(0,1)$ in that order. What are the end-points of the curve segment? What is the mid-point of the curve segment?
b) Explain about the characteristics of B-Spline curves. 7 M
5. a) Explain surfaces of revolution with examples.
b) Consider a parabolically blended curve with the following
 about the x-axis through 2π and also calculate surface points at 0.5 and $\emptyset=\pi / 3$. 9 M
6. Explain the parametric representation of the following synthetic surfaces :
a) B- Spline surface.
b) Coon`s surface.
7. a) Explain the concept of half spaces in solid modeling. 7 M
b) Compare 2D and 3D wire frame models.

8. Explain the algebraic and geometric forms of a Tri-cubic solid.
 14 M

